

Importance of Communication in an Organization

Effective Communication is significant for managers in the organizations so as to
perform the basic functions of management, i.e., Planning, Organizing, Leading
and Controlling.

Communication helps managers to perform their jobs and responsibilities.
Communication serves as a foundation for planning. All the essential information
must be communicated to the managers who in-turn must communicate the plans
so as to implement them. Organizing also requires effective communication with
others about their job task. Similarly leaders as managers must communicate
effectively with their subordinates so as to achieve the team goals. Controlling is
not possible without written and oral communication.

Managers devote a great part of their time in communication. They generally
devote approximately 6 hours per day in communicating. They spend great time
on face to face or telephonic communication with their superiors, subordinates,
colleagues, customers or suppliers. Managers also use Written Communication in
form of letters, reports or memos wherever oral communication is not feasible.

Thus, we can say that “effective communication is a building block of successful
organizations”. In other words, communication acts as organizational blood.

The importance of communication in an organization can be summarized as
follows:

1. Communication promotes motivation by informing and clarifying the

employees about the task to be done, the manner they are performing the
task, and how to improve their performance if it is not up to the mark.

2. Communication is a source of information to the organizational members
for decision-making process as it helps identifying and assessing
alternative course of actions.

3. Communication also plays a crucial role in altering individual’s attitudes,
i.e., a well-informed individual will have better attitude than a less-
informed individual. Organizational magazines, journals, meetings and

http://www.managementstudyguide.com/importance_of_motivation.htm

various other forms of oral and written communication help in moulding
employee’s attitudes.

4. Communication also helps in socializing. In today's life the only presence
of another individual fosters communication. It is also said that one cannot
survive without communication.

5. As discussed earlier, communication also assists in controlling process. It
helps controlling organizational member’s behavior in various ways. There
are various levels of hierarchy and certain principles and guidelines that
employees must follow in an organization. They must comply with
organizational policies, perform their job role efficiently and communicate
any work problem and grievance to their superiors. Thus, communication
helps in controlling function of management.

An effective and efficient communication system requires managerial proficiency
in delivering and receiving messages. A manager must discover various barriers
to communication analyze the reasons for their occurrence and take preventive
steps to avoid those barriers. Thus, the primary responsibility of a manager is to
develop and maintain an effective communication system in the organization.

INFORMATION SYSTEMS PLANNING

Planning an information system doesn’t start with bits and bytes, or a Web site. Rather, it

starts with gaining a holistic perspective on what the firm aims to achieve and how it will

do so. Systems development is the entire set of activities needed to construct an

information systems solution to a business problem or opportunity. A key component is

information systems planning, which begins with the strategic plan of the organization, as

shown in Figure 1. The organization’s strategic plan states the firm’s overall mission, the

goals that follow from the mission, and the broad steps necessary to reach these goals. An

essential input into the organization’s strategic plan is an assessment of the current state

of the organization, in which the current performance of the firm is compared to the

previous strategic plan. The mission states what the organization ideally wants to become

or to create at some future point in time. The strategic planning process matches the

organization’s objectives and resources to its changing markets and opportunities.

The organizational strategic plan and the existing IT architecture provide the inputs in

developing the information systems strategic plan. The IT architecture delineates the

way an organization’s information resources should be used to accomplish its mission. It

encompasses both technical and managerial aspects of information resources.

The technical aspects include hardware and operating systems, networking, data and data

management systems, and applications software. The managerial aspects specify how

managing the IS department will be accomplished, how functional area managers will be

involved, and how IS decisions will be made.

http://www.managementstudyguide.com/communication_barriers.htm
http://www.managementstudyguide.com/communication_barriers.htm

The IS Strategic Plan

The IS strategic plan is a set of long-range goals that describe the IT architecture and

major IS initiatives needed to achieve the goals of the organization. The IS strategic plan

must meet three objectives:

• It must be aligned with the organization’s strategic plan.

• It must provide for an IT architecture that enables users, applications, and databases to

be seamlessly networked and integrated.

• It must efficiently allocate IS development resources among competing projects, so the

projects can be completed on time, within budget, and have the required functionality.

The IS strategic plan states the mission of the IS department, which defines the

department’s underlying purpose. The mission helps to answer questions relating to three

major issues:

• Efficiency. Does the IS function help the organization reach its goals with minimum

resources?

• Effectiveness. Does the IS function help the functional area managers (and executives)

do the right things?

• Competitiveness. Does the IS function engage in projects that will enhance the

organization’s competitive position?

The mission of the IS department requires a great deal of input from all of the

organization’s functional area managers, and often from higher organizational officers as

well. This input will help to define the appropriate role of the IS department in

accomplishing the organization’s goals.

The IS Operational Plan

The IS strategic plan may require a new IT architecture, or the existing IT architecture

may be sufficient. In either case, the IS strategic plan leads to the IS operational plan,

which is a clear set of projects that will be executed by the IS department and by

functional area managers in support of the IS strategic plan.

A typical IS operational plan contains the following elements:

• Mission: The mission of the IS function
• IS environment: A summary of the information needs of the functional areas and of

the organization as a whole

• Objectives of the IS function: The IS function’s current best estimate of its goals

• Constraints on the IS function: Technological, financial, and personnel limitations on

the IS function

• Long-term system's needs: A summary of the systems needed by the company and the

IS projects selected to reach organizational goals

• Short-range plan: An inventory of present projects, and a detailed plan of projects to

be developed or continued during the current year

Overview of Systems Development

Systems development is the procedure of defining, designing, testing, and implementing

a new software application or program. It comprises of the internal development of

customized systems, the establishment of database systems, or the attainment of third

party developed software. In this system, written standards and techniques must monitor

all information systems processing functions. The management of company must describe

and execute standards and embrace suitable system development life cycle practice that

manage the process of developing, acquiring, implementing, and maintaining

computerized information systems and associated technology.

System development methodologies are promoted in order to improve the management

and control of the software development process, structuring and simplifying the

procedure, and standardizing the development process and product by stipulating actions

to be done and methods to be used. It is often implicitly presumed that the use of a system

development methodology will increase system development output and excellence.

System Development Management Life-cycle

It is maintained in management studies that effectual way to protect information and

information systems is to incorporate security into every step of the system development

process, from the initiation of a project to develop a system to its disposition. The manifold

process that begins with the initiation, analysis, design, and implementation, and continues

through the maintenance and disposal of the system, is called the System Development

Life Cycle (SDLC). Walsham (1993) stated that "system development life cycle is an

approach to developing an information system or software product that is

characterized by a linear sequence of steps that progress from start to finish without

revisiting any previous step." It is one of the oldest systems development models and is

commonly used (Walsham, 1993). According to Dennis, Wixom, and Tegarden(2009)

"the systems development life cycle is the process of understanding how an

information system (IS) can support business needs by designing a system, building

it, and delivering it to users" .

The SDLC model is basically a project management device that is used to plan, execute,

and control systems development projects (Whitten and Bentley, 1998). System

development life cycles are usually deliberated in terms of the conventional development

using the waterfall model or the prototyping development spiral model. Major objectives

of systems development lifecycle are to ensure that high quality systems are delivered,

provide strong management controls over the projects, and maximize the productivity of

the systems staff. In order to fulfill these objectives, the systems development lifecycle

has many specific requirements that include being able to support projects and systems of

various scopes and types, supporting all of the technical activities, supporting all of the

management activities, being highly usable, and providing guidance on how to install it.

Phases of System Development

A system development project comprises of numerous phases, such as feasibility analysis,

requirements analysis, software design, software coding, testing and debugging,

installation and maintenance.

1. A feasibility study is employed to decide whether a project should proceed. This

will include an initial project plan and budget estimates for future stages of the

project. In the example of the development of a central ordering system, a

feasibility study would look at how a new central ordering system might be

received by the various departments and how costly the new system would be

relative to improving each of these individual systems.

2. Requirement analysis recognizes the requirements for the system. This includes a

detailed analysis of the specific problem being addressed or the expectations of a

particular system. It can be said that analysis will coherent what the system is

supposed to do. For the central ordering system, the analysis would cautiously

scrutinize existing ordering systems and how to use the best aspects of those

systems, while taking advantage of the potential benefits of more centralized

systems.

3. The design phase consist of determining what programs are required and how

they are going to interact, how each individual program is going to work, what

the software interface is going to look like and what data will be required.

System design may use tools such as flowcharts and pseudo-code to develop the

specific logic of the system. For this central ordering system, the design phase

would lay out the comprehensive steps of how orders would take place and who

in the organization would be involved at each step.

4. Implementation stage includes the design which is to be translated into code.

This requires choosing the most suitable programming language and writing the

actual code needed to make the design work. In this stage, the central ordering

system is essentially coded using a particular programming language. This would

also include developing a user interface that the various departments are able to

use efficiently.

5. Testing and debugging stage encompasses testing individual modules of the

system as well as the system as a whole. This includes making sure the system

actually does what is expected and that it runs on intended platforms. Testing

during the early stages of a project may involve using a prototype, which meets

some of the very basic requirements of the system but lacks many of the details.

Testing of the central ordering system could take place in one department or use

only a few key individuals. That makes it possible to recognize needed

improvements before execution in all departments.

6. In Installation phase, the system is implemented so that it becomes part of the

workflows of the organization. Some training may be needed to make sure

employees get happy with using the system. At this stage, the central ordering

system is installed in all departments, replacing the older system.

7. All systems need some types of maintenance. This may consist of minor updates

to the system or more drastic changes due to unexpected circumstances. As the

organization and its departments evolve, the ordering process may require some

modifications. This makes it possible to get the most out of a new centralized

system.

Phases of the system development cycle

Whitten and Bentley (1998) recommended following categories of system development

project lifecycle:

1. Planning

2. Analysis

3. Design

4. Implementation

5. Support

There are many different SDLC models and methodologies, but each usually consists of

a series of defined steps such as Fountain, Spiral, rapid prototyping, for any SDLC

model that is used, information security must be integrated into the SDLC to ensure

appropriate protection for the information that the system will transmit, process, and

store.

System development life-cycle models (Source: Conrick, 2006))

Fountain Model Recognizes that there is considerable overlap of activities throughout the

development cycle.

Spiral model Emphasis the need to go back and reiterate earlier stages like a series of short

water fall cycle, each producing an early prototype representing the part of
entire cycle.

Build and fix model Write some programming code, keeps modifying it until the customer is

happy. Without planning this is very open ended and risky.

Rapid prototyping

model

Emphasis is on creating a prototype that looks and act like the desired product

in order to test its usefulness. Once the prototype is approved, it is discarded

and real software is written.

Incremental model Divides the product into builds, where sections of the projects are created and

tested separately.

Synchronize and

stabilise model

Combines the advantages of spiral models with technology of overseeing and

managing source code. This method allows many teams to work efficiently in

parallel. It was defined by David Yoffe of Harvard University and Michael

Cusumano of Massachusetts institute of technology who studied Microsoft

corporation developed internet explorer and how the Netscape communication

corporation developed communicator finding common thread In the ways the

two companies worked.

Waterfall Model

The Waterfall Model signifies a traditional type of system development project lifecycle.

It builds upon the basic steps associated with system development project lifecycle and

uses a top-down development cycle in completing the system.

Walsham (1993) outlined the steps in the Waterfall Model which are as under:

1. A preliminary evaluation of the existing system is conducted and deficiencies are

then identified. This can be done by interviewing users of the system and

consulting with support personnel.

2. The new system requirements are defined. In particular, the deficiencies in the

existing system must be addressed with specific proposals for improvement.

3. The proposed system is designed. Plans are developed and delineated concerning

the physical construction, hardware, operating systems, programming,

communications, and security issues.

4. The new system is developed and the new components and programs are

obtained and installed.

5. Users of the system are then trained in its use, and all aspects of performance are

tested. If necessary, adjustments must be made at this stage.

6. The system is put into use. This can be done in various ways. The new system

can be phased in, according to application or location, and the old system is

gradually replaced. In some cases, it may be more cost-effective to shut down the

old system and implement the new system all at once.

7. Once the new system is up and running for a while, it should be exhaustively

evaluated. Maintenance must be kept up rigorously at all times.

8. Users of the system should be kept up-to-date concerning the latest modifications

and procedures.

On the basis of the Waterfall Model, if system developers find problems

associated with a step, an effort is made to go back to the previous step or the

specific step in which the problem occurred, and fix the problem by completing

the step once more.

The model's development schedule

Fountain model: The Fountain model is a logical enhancement to the Waterfall model.

This model allows for the advancement from various stages of software development

regardless of whether or not enough tasks have been completed reaching it.

Prototyping Model: The prototyping paradigm starts with collecting the requirements.

Developer and customer meet and define the overall objectives for the software, identify

whatever requirements are known, and outline areas where further definition is

mandatory. The prototype is appraised by the customer/user and used to improve

requirements for the software to be developed. Iteration occurs as the prototype is tuned

to satisfy the needs of the customer, while at the same time enabling the developer to better

understand what needs to be done.

Major Advantages of this Model include

i. When prototype is presented to the user, he gets a proper clearness and

functionality of the software and he can suggest changes and modifications.

ii. It determines the concept to prospective investors to get funding for project and

thus gives clear view of how the software will respond.

iii. It decreases risk of failure, as potential risks can be recognized early and

alleviation steps can be taken thus effective elimination of the potential causes is

possible.

iv. Iteration between development team and client provides a very good and

conductive environment during project. Both the developer side and customer

side are coordinated.

v. Time required to complete the project after getting final the SRS reduces, since

the developer has a better idea about how he should approach the project.

Main drawbacks of this model are that Prototyping is typically done at the cost of the

developer. So it should be done using nominal resources. It can be done using Rapid

Application Development tools. Sometimes the start-up cost of building the development

team, focused on making the prototype is high. Once developers get proper requirements

from client after showing prototype model, it may be useless. It is a slow process and too

much involvement of client is not always favored by the creator.

Figure: different phases of Prototyping model

Uses of prototyping:

i. Verifying user needs

ii. Verifying that design = specifications

iii. Selecting the “best” design

iv. Developing a conceptual understanding of novel situations

v. Testing a design under varying environments

vi. Demonstrating a new product to upper management

vii. Implementing a new system in the user environment quickly

Rapid Application Development

This model is based on prototyping and iterative development with no detailed planning

involved. The process of writing the software itself involves the planning required for

developing the product. Rapid Application development focuses on gathering customer

requirements through workshops or focus groups, early testing of the prototypes by the

customer using iterative concept, reuse of the existing prototypes (components),

continuous integration and rapid delivery. There are three main phases to Rapid

Application Development:

i. Requirements planning

ii. RAD design workshop

iii. Implementation

RAD Model

RAD is used when the team includes programmers and analysts who are experienced with

it, there are pressing reasons for speeding up application development, the project involves

a novel ecommerce application and needs quick results and users are sophisticated and

highly engaged with the goals of the company.

Spiral Model: The spiral model was developed by Barry Boehm in 1988 (Boehm, 1986).

This model is developed to Spiral Model to address the inadequacies of the Waterfall

Model. Boehm stated that “the major distinguishing feature of the Spiral Model is that it

creates a risk-driven approach to the software process rather than a primarily document-

driven or code-driven process. It incorporates many of the strengths of other models and

resolves many of their difficulties" (1988). A Spiral Model the first model to elucidate

why the iteration matters. Spiral model is an evolutionary software process model which

is a grouping of an iterative nature of prototyping and controlled and systematic aspects

of traditional waterfall model. As originally proposed, the iterations were usually 6 months

to 2 years long. Each phase starts with a design goal and ends with the client reviewing

the progress. Analysis and engineering efforts are done at each phase of the project. The

spiral model consists of four phases:

i. Planning

ii. Risk Analysis

iii. Engineering

iv. Evaluation

Major benefits of this model include:

i. Changing requirements can be accommodated.

ii. Allows for extensive use of prototypes.

iii. Requirements can be captured more accurately.

iv. Users see the system early.
v. Development can be divided in to smaller parts and more risky parts can be

developed earlier which helps better risk management.

Main drawbacks of this model are as under:

1. Management is more complex.

2. Conclusion of project may not be recognized early.

3. Not suitable for small or low risk projects (expensive for small projects).

4. Process is difficult

5. Spiral may go indeterminately.

6. Large numbers of intermediate stages require unnecessary documentation.

The spiral model is normally used in huge projects. For example, the military had adopted

the spiral model for its Future Combat Systems program. The spiral model may suit small

software applications.

Phases of spiral model

Incremental model: Incremental model is a technique of software development in which

the model is analyzed, designed, tested, and implemented incrementally. Some benefits of

this model are that it handles large projects; it has the functionality of the water fall and

the prototyping model. It is easier to manage the project as it is broken

down into smaller pieces, changes can be done through the development stages and errors

are easy to be identified.

Disadvantages of this model are that when remedying a problem in a functional unit, then

all the functional units will have to be corrected thus taking a lot of time. It needs good

planning and designing.

Increment model of SDLC

There are numerous benefits of integrating security into the system development life cycle

that are as under:

1. Early documentation and alleviation of security vulnerabilities and problems

with the configuration of systems, resulting in lower costs to implement security

controls and mitigation of vulnerabilities;

2. Awareness of potential engineering challenges caused by mandatory security

controls.

3. Identification of shared security services and reuse of security strategies and

tools that will reduce development costs and improve the system’s security

posture through the application of proven methods and techniques.

4. Assistance of informed executive decision making through the application of a

comprehensive risk management process in a timely manner.

5. Documentation of important security decisions made during the development

process to inform management about security considerations during all phases of

development.

6. Enhanced organization and customer confidence to facilitate adoption and use of

systems, and improved confidence in the continued investment in government

systems.

7. Improved systems interoperability and integration that would be difficult to

achieve if security is considered separately at various system levels.

Strengths of System Development Life Cycle

1. Methodologies incorporating this approach have been well tried and tested.

2. This cycle divides development into distinct phases.

3. Makes tasks more manageable.

4. It Offers opportunity for more control over development process.

5. It Provides standards for documentation.

6. It is better than trial and error.

Weaknesses of System Development Life Cycle

1. It fails to realize the “big picture” of strategic management.

2. It is too inflexible to cope with changing requirements.

3. It stresses on “hard” thinking (which is often reflected in documentation that

is too technical).

4. It unable to capture true needs of users.

To summarize, the systems development life cycle is a theoretical model which is used in

project management. It explained various phases involved in an information system

development project, from an initial feasibility study through maintenance of the

completed application. SDLC system life cycle is a step by step systematic approach from

planning to testing and deployment of the project. There are some rudimentary phases

that are firmly followed in the order as analysis, designing, coding, testing and

implementation. Different SDLC models are used to develop numerous projects.

